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Abstract— Internet advertising is a relatively new area where
feedback control has become critically important for scalable
optimization. But using feedback control presents new chal-
lenges, one being the discontinuous nature of the input-output
relationship of the plant to control. In this paper we propose
an actuator and control algorithm for the specific objective of
scalable event rate control in online advertising. The actuator
makes the input-output relationship of the plant effectively
continuous and with adjustable plant gain, and the feedback
controller implements a PI controller to regulate the campaign-
level event rate to stay at or above a reference value.

I. INTRODUCTION

Advertising, which is a US$600 billion industry [1], has
in recent years come to rely heavily on feedback control
for online applications. Each advertiser wishes to spend an
advertising budget in such a way that their specific branding
and/or performance objective is optimized. Cooperation is
not permitted and the advertisers compete over ad impressi-
ons (opportunities to show advertisements to Internet users).
In short, each advertiser wishes to serve ads to those Internet
users that generate the highest return on investment.

The allocation of ad impressions is handled in impres-
sion exchanges. Any advertiser may submit bids for any
opportunity to show an ad, but only the highest bidder is
awarded the impression. The optimization problem turns into
a problem of devising a bidding strategy that maximizes the
overall returned value given a limited advertising budget.
Given the extremely large number of Internet users browsing
Internet every day and the large number of advertisers, it is
an extraordinarily high-dimensional problem. In addition to
the scale, time-varying and stochastic traffic patterns and user
behaviors add complexity to the optimization problem.

Feedback control has played a critical role in solving the
above type of optimization problems for more than ten years.
See e.g. [2] for an early high-level introduction to the control
problem and [3] for an attempt at dealing with the unique
challenges in this domain. The first deep dive into how the
optimization problem is turned into a control problem and
what some of the challenges are in order to solve the control
problem was published in [4].

However, the problem considered in [4] is to maximize
a value function given an ad budget. A slightly different
problem is to control an average event rate, e.g., a campaign-
level click-through or conversion rate, which is the focus
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of this paper. We are not aware of any previous attempt at
solving this problem in the context of online advertising and
restricted to decentralized (scalable) feedback control.

The paper is organized as follows. We define the control
problem in Section II. By default the plant is discontinuous,
but an actuation mechanism is proposed in Section III to
effectively turn the input-output relationship of the plant
continuous. In Section IV we describe how to model and
tune the plant. The information is used to establish a nominal
plant model that is used in Section V to design a feedback
controller. In Section VI the control system is evaluated
both in a simulated but realistic environment and on a real
advertising campaign to assess performance and stability of
the closed-loop control system. Finally, in Section VII we
wrap up the paper with some concluding remarks and ideas
of future work.

II. PROBLEM FORMULATION

The impression allocation for segment i is governed by
a sealed second price auction [5], where bi is the bid price
submitted to the auction and ai is the bid allocation, or the
sampled fraction of auctions we choose to participate in. For
problems related to maximization of value or return on inves-
tment, bi is computed based on the estimated monetary value
of impressions from segment i taking into account possible
constraints on budget and return on investment [4]. However,
sometimes an advertiser also cares about the average event
rate, where an event is defined by the advertiser (e.g., a click
or a conversion) and where the event rate pi is defined as
the probability that an impression from segment i turns into
an event.

Suppose the campaign is submitting competitive bid prices
(is the highest bidder) in segments labeled i = 1, . . . ,m, and
suppose the total number of available impressions in segment
i is nrelavail,i. This paper deals with feedback-based control
of a campaign’s average event rate by way of adjusting
ai, and we neglect possible dynamic coupling between the
computation of bi and ai.

The objective is to devise a feedback controller that adjusts
ai, i = 1, . . . ,m, such that the average observed event rate
of the campaign is at or above a prescribed reference value
pref . We have access to site-level event rate estimates p̂i ≈ pi
and demand a computationally efficient (scalable) solution.

Scalability is obtained by the decoupled solution shown in
the block diagram in Figure 1. Actuator is a static (memory-
less) component processing the segment-level event rate
estimates and a campaign-level scalar control signal u. Event
Rate Controller is a feedback based component consuming a
campaign-level reference signal pref and a scalar feedback



Fig. 1. Block diagram of the event rate control problem.

signal p representing an estimated campaign-level event
rate. While the modularized solution provides scalability, it
potentially leads to a discontinuous relationship between u
and p. Indeed, if u is handled simply as a threshold value
such that ai = I{pi≥u}, where IX is the indicator function
satisfying IX = 1, if X = true, and IX = 0, if X = false; then
the relationship between u and p is discontinuous.

III. BETA ACTUATION

The objective of the actuator is to map a campaign-level
control signal u to adjustments of individual bid allocation
values ai in a manner that permits regulating the average
campaign-level event rate p (see Figure 1). At our disposal
are event rate estimates p̂i.

To make control possible, it is important that both the
relationship from u to p, and the relationship from p̂i to p
are well-behaved. For example, small perturbations of u or
p̂i must result in only small perturbations of p. Furthermore,
the relationship between u and p should be monotonic and
continuous, and the range of values for u should map to
the widest range possible for p, and ideally the range of
u should be well-known, e.g., [0,1]. Finally, to support
scalability and to make dynamic analysis of the closed loop
system practically doable, it is preferred the actuator is static
(memory-less) and computationally inexpensive to use.

We impose the following requirements on the actuator
mapping ai = g(p̂i, u), defined for 0 ≤ p̂i ≤ 1 and 0 ≤ u ≤ 1:

● g is static
● 0 ≤ g(p̂i, u) ≤ 1 for all p̂i, u
● g(p̂i,0) = 1 for all p̂i
● g(p̂i,1) = 0 for 0 ≤ p̂i < 1
● g(p̂i, u) is continous in p̂i and u
● g(p̂i, u) is decreasing in u for 0 < p̂i < 1
● g(p̂i, u) is increasing in p̂i for 0 < u < 1
● g(p̂i, u) is a computationaly inexpensive mapping

It is assumed p̂i ≈ pi, where pi is the true event rate for the
ith segment.

A. Beta Distribution

The proposed actuator design makes use of properties
of the so-called beta distribution from mathematical statis-
tics [6]. The beta distribution with parameters α and β is a
continuous probability distribution. If a random variable X
follows the beta distribution, we write X ∼ Beta(α,β). The
probability density function of x is given by

f (x∣α,β) =
xα−1(1 − x)β−1

B(α,β)
,

for x ∈ [0,1], where B(α,β) is the beta function (also called
the Euler integral) defined by

B(α,β) = ∫

1

0
xα−1(1 − x)β−1dx.

Parameters α > 0 and β > 0 are referred to as shape
parameters. The expected value µ and variance σ2 of X are

µ ∶= E(X) =
α

α + β
,

σ2
∶= Var(X) =

αβ

(α + β)2(α + β + 1)
.

The cumulative density function of x is given by

F (x∣α,β) =
1

B(α,β)
∫

x

0
tα−1(1 − t)β−1dt

and is more generally (beyond stochastic systems) called the
regularized incomplete beta function.

It is easy to show that if σ2 > 0, then

α =
µ2(1 − µ)

σ2
− µ

β = (1 − µ)(
µ(1 − µ)

σ2
− 1)

Leveraging on properties of the incomplete beta function,
we propose an actuator ai = g(p̂i, u) of the form ai =

F (p̂i∣α,β). If α and β are chosen wisely as functions of
u, then the actuator satisfies the actuator requirements.

B. Beta Actuator

Select αc(u) and βc(u) parameterized by c such that the
corresponding beta distribution with scale parameters αc(u)
and βc(u) has mean µ and variance σ2 given by

µ = u,

σ2
=

1

c + 1
u(1 − u),

where c > 0 and 0 ≤ u ≤ 1. Configuration parameter c is
used to adjust the sensitivity of the actuator in response to
variations in u and p̂i.

Using previously stated results for the beta distribution, it
follows that

αc(u) = cu

βc(u) = c(1 − u)

ai = F (p̂i∣αc(u), βc(u))

if 0 < u < 1; otherwise, ai = u. The plots in Figure 2 give
an initial idea of how ai depends on c, u, and p̂i. The left
subplot shows that ai goes from 1 to 0 as u goes from 0
to 1 at a rate that depends on the configuration parameter
c, and with most of the drop occurring when u ≈ p̂i. The
right subplot demonstrates the opposite behavior for ai as a
function of p̂i.

To underscore that the algorithm in no way is stochastic,
and does not involve a cumulative density function in sta-
tistical sense, we use B(p̂i∣α,β) to denote the regularized



Fig. 2. The plots demonstrate how the bid allocation ai for different values
of c varies as a function of u for a fixed event rate p̂i (left), and as a function
of p̂i for a fixed event rate u (right).

incomplete beta function. In particular, if B(α,β) denotes
the beta function defined by

B(α,β) = ∫

1

0
tα−1(1 − t)β−1dt,

then

B(p̂∣α,β) =
1

B(α,β)
∫

p̂

0
tα−1(1 − t)β−1dt.

The actuator algorithm is summarized as follows:

Algorithm 1 Beta actuation
1: Configuration parameters: c
2: Input signals: p̂i, u
3: Output signals: ai
4:
5: Computation:
6:
7: for all i
8: α = cu
9: β = c(1 − u)

10: ai = B(p̂i∣α,β)
11: end

The regularized incomplete beta function is a standard
function in most math libraries, e.g., in Matlab it is called
’betainc’.

To fully appreciate the properties of beta actuation, con-
sider the following examples.

Example 3.1: Figure 3 illustrates how the actuator re-

Fig. 3. The plot shows bid allocation ai as a function of estimated event
rate p̂i for four different values of control signal u.

sponds gracefully to variations in the estimated event rate
p̂i for a select few values of u and for the specific value of
c = 50. The graceful behavior is of importance since event

rate estimates in online advertising typically are subject to
significant noise, and the noise may otherwise introduce a
destabilizing disturbance in the feedback loop. Note how
p̂i → 0 ⇒ ai → 0 and how p̂i → 1 ⇒ ai → 1 regardless
the value of u. As shown, ai is monotonically increasing as
a function of p̂i, and ai tends to increase most rapidly for
values of p̂i ≈ u. ∎

Example 3.2: Figure 4 demonstrates how ai varies as a

Fig. 4. The plots show bid allocation ai as a function of estimated event
rate p̂i for c = 5,50,500,5000, and for u = 0,0.05,0.1, . . . ,1 (left to right
curve in each plot).

function of p̂i for different values of u and c. Each subplot
corresponds to one value of c (c = 5,50,500,5000), and the
curves in each subplot correspond to different values of u
(from left to right they are u = 0,0.05,0.1, . . . ,1). The bid
allocation ai changes less abruptly for small values of c and
approaches the indicator function I{p̂i≥u} when c→∞. ∎

Example 3.3: Figure 5 shows an example of campaign-

Fig. 5. Example of campaign-level relationship between control signal u
and event rate p.

level relationship between control signal u and event rate p,



depicted in the block diagram in Figure 1. This relationship
depends on the distribution of available impressions with
different event rates. Suppose the number of available im-
pressions ni per segment-level event rate p̂i is as displayed in
the bar chart. All these impressions would have been awarded
if ai = 1 for all i. By adjusting u, which is the input to the
beta actuator we regulate ai in such a way that the effective
campaign-level event rate changes.

The four subplots on the right present the effective
event rate p as a function of control signal u for c =

5000,500,50,5. With c = 5000 the response curve is close to
a discontinuous staircase function, while for a much smaller
value of c steps in the curve are virtually gone. In effect, the
actuator makes the control problem less challenging. ∎

IV. PLANT MODELING AND TUNING

In this section, we discuss plant modeling and tuning. The
plant is defined by the mapping from campaign-level control
input u to the campaign-level output p as shown in Fig. 1.
The input-output relationship u→ p may be tuned using the
beta actuation parameter c.

For simplicity of presentation and without loss of gene-
rality, in the sequel of this paper we consider in-view rate
control for display advertising. An impression is considered
viewable if 50% of the ad pixels are in view for more than
one second [7]. In the context of in-view rate control, an
event is specifically an impression being viewable by an
Internet user.

The in-view rate is defined as a ratio of viewable im-
pression volume to measured impression volume, where
measured impression volume is the total number of served
impressions that are measured by a certain viewability mea-
surement technology [7].

We first estimate the plant gain based on data from a
population of 200 eCPM1 advertising campaigns. Figure 6
shows the campaign-level in-view rate p vs. control signal
u (left) and the corresponding slopes dp/du vs u (right) in
log scale, for four values of the beta actuator configuration
parameter c. The slope value represents the effective plant
gain and is of primary interest in what follows. Each curve
in the plot is obtained by following the procedure as outlined
in Example 3.3. Note that smaller c leads to smoother slope
curves, and its choice is important in the tuning of the plant.

To obtain a generic model to use for control design when
the same controller must work for any campaign, we further
generate the percentile plots in Fig. 7. Each point on the
95% curve in blue (as an example), is generated by sorting
from smallest to largest the 200 data points for each specific
u value, and selecting the 10th largest value. A larger c
makes the control problem more challenging due to the large
variations in the plant gain, while a smaller c may lead
to a more conservative control design with sluggish control
response. We choose c = 50, since it leads to a uniform plant

1An eCPM campaign is a campaign with an optimization objective
of maximizing the total number of impressions for a given ad budget
(eCPM=effective cost per thousand impressions).

Fig. 6. In-view rate p (left) and in-view rate slope dp/du (right) vs.
control signal u for select beta actuation configuration parameter c and for
200 representative ad campaigns.

Fig. 7. Percentile plots of the in-view rate slope dp/du vs. control signal
u for select Beta actuation sensitivity parameter c.

gain over a large range of the control signal u, e.g., for u in
between roughly 0.05 and 0.83.

V. CONTROL DESIGN

We first present an in-view rate estimator that computes
an estimate p̂ of the campaign-level in-view rate p, as the
feedback signal. A PI control scheme with windup protection
is then employed for in-view rate control.

A. In-View Rate Estimator

Let {tk}, k = 0,1, . . ., denote the sampling time instants
and h the sampling period; and let nmeas(tk) and nview(tk)
denote the total (across all segments) number of measured
impressions and the total number of viewable impressions,
respectively, at time tk. Let p̂(tk) denote the campaign-level
in-view rate estimate at time tk. We compute p̂(tk) from the
impression counts as follows [8], [9]:

αp(tk) = λ
hαp(tk−1) + nview(tk), αp(t0) = α

0
p

βp(tk) = λ
hβp(tk−1) + nmeas(tk), βp(t0) = β

0
p

where λ ∈ (0,1) is a design parameter, and

p̂(tk) =
αp(tk)

βp(tk)
. (1)



Note, if nview(tk) ∼ Poisson(nmeas(tk)p) and our a priori
belief of p satisfies p ∼ Gamma(α0, β0), then the above
estimator can be shown to be the optimal Bayesian estimator
under a squared loss function [8], [9], [10].

B. In-View Rate Controller

The estimate p̂(tk) is a measure of the system performance
in terms of the average campaign-level in-view rate. The
gap between this estimate and the user-specified in-view rate
reference pref(tk) ∈ [0,1] defines the error signal that drives
the in-view rate controller.

We employ a PI controller with windup protection [11]
to generate a control signal u(tk), to be used for the beta
actuation. Let Tnormint and Tnormwindup be design parameters
that specify the time constants for the integrator and the
correction as

Tint = T
norm
int h

Twindup = T
norm
winduph

The PI feedback control design is as follows [11]:

e(tk) = p
ref

(tk) − p̂(tk) (2)

ep(tk) = bp
ref

(tk) − p̂(tk) (3)
P (tk) =Kpep(tk)

Itemp(tk) = I(tk−1) +
Kph

Tint
e(tk), I(t0) = 0

utemp(tk) = P (tk) + Itemp(tk)

where b is the set-point weight, Kp is the proportional gain
of the PI controller, and Tint is the integrator time constant.
Let δ ∈ (0,1) be a parameter that specifies how much the
control signal u(tk) is allowed to vary within a certain time
unit, e.g., hour, and umin, umax ∈ [0,1] with umin < umax

specify the hard limits u(tk) must be confined to (by default
and in most practical situations umin = 0 and umax = 1).
Note that umin and umax may change (infrequently) during a
campaign flight. At each time instant tk, we define ulow(tk)
and uhigh(tk) as follows:

● if umin ≥ u(tk−1) + δh or umax ≤ u(tk−1) − δh

ulow(tk) = u
min, uhigh(tk) = u

max

● else

ulow(tk) =max (u(tk−1) − δh, u
min) , u(t0) = u

min

uhigh(tk) =min (u(tk−1) + δh, u
max

)

The control signal is then generated as

u(tk) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

ulow(tk), if utemp(tk) < ulow(tk)
utemp(tk), if ulow(tk) ≤ utemp(tk) ≤ uhigh(tk)
uhigh(tk), if utemp(tk) > uhigh(tk)

Windup correction is added to the integrator term as

I(tk) = Itemp(tk) +
h

Twindup
(u(tk) − utemp(tk))

where Twindup is a design parameter.

C. Selection of Design Parameters

The choice of design parameters is of significant impor-
tance to the overall control system performance. As can be
seen from Fig. 7, the 95% curve with c = 50 provides a high
estimate of the plant gain (almost “worst case scenario”),
and its maximum occurs at u = 0.91 with a plant gain of
2.93. According to the Nyquist stability criterion, the inverse
of the plant gain estimate gives an upper bound on the
controller gain Kp for closed-loop stability. To achieve a
robust design, we opt for a 6dB (≈ 20 log10 2) gain margin,
which is obtained with a proportional gain Kp = 0.17.

As a rule of thumb for the time constants of the in-
tegrator and the windup correction, h/Tint ∈ [0.1,0.3],
and Twindup < Tint [11]. We choose Tnormint = 3.33
and Tnormwindup = Tnormint /1.05, such that h/Tint = 0.3 and
Twindup = Tint/1.05. Furthermore, we choose λ = 0.9 for
the in-view rate estimator.

Table I summarizes the design parameter choices for the
PI controller and in-view rate estimator.

TABLE I
SUMMARY OF DESIGN PARAMETERS.

Kp Tnorm
int Tnorm

windup λ c

0.17 3.33 3.17 0.9 50

VI. EXPERIMENT RESULTS

In this section, the performance of the proposed event
rate control scheme has been evaluated in both a simulated
environment and on a real advertising campaign.

A. Simulation Result

We first evaluate the proposed control system in a simu-
lated environment. The plant is defined as a campaign with
a total of ndailyavail = 2.4 × 106 available measured impressions
per day, randomly distributed over 100 sites (segments). The
relative impression count per site is given by a (normalized)
random number generated from a Gamma distribution with
a relative standard deviation of 0.6. In particular, for each
site we draw a random number from Gamma(α,β) with
the shape parameter α = 1/σ2 and the scale parameter
β = σ2, where σ = 0.6. The site-level relative impression
volume is given by the corresponding random number over
the sum of all 100 random numbers. Site-level in-view rates
are generated from a Uniform(0,1) distribution.

To capture a realistic time-of-day pattern in Internet
traffic, the daily available impression counts are
distributed throughout the day according to navail(tk) =
ndaily
avail

24
[1 + β1 sin ( 2π

24
tk + φ1) + β2 sin ( 2π

12
tk + φ2)], where

the parameters have been summarized in Table II, along
with others (see also Table I)

TABLE II
SUMMARY OF SIMULATION PARAMETERS.

b δ h umin umax β1 β2 φ1 φ2

1 0.1 0.25 0 0.9 0.63 2.76 0.26 0.39



The control performance is illustrated in Fig. 8 with
the campaign-level average in-view rate (IVR) p̂ (top) as
computed in (1), the control signal u (middle), and the total
awarded impression volume nmeas and viewable impression
volume nview (bottom). In particular, we are simulating
a case in which the advertiser changes the in-view rate
reference signal pref , as shown with a red dashed line in
Fig. 8 (top). By computing u to drive the beta actuator, the
proposed event rate controller regulates p̂ to pref .

Fig. 8. Simulation results: campaign-level control system performance.

Note when pref is set high, e.g., pref = 0.95, during the
first 120 hours, very few impressions from low IVR sites
are awarded, which implies a low total awarded impression
count. An under-delivery of the ad budget follows. This is
due to insufficient impression inventories with relatively high
IVR. In fact, since in the simulated scenario umax = 0.9, the
actuator is saturated. When pref is lowered to a less extreme
level of 0.7 between hours 120 and 360, it can be tracked
very well. However, if pref is set too low, the control signal
u may be saturated to the low limit of umin = 0 between
hours 360 and 600 when pref = 0.3. The control scheme
handles saturation well in either case and the system quickly
recovers from saturation.

B. Performance on a Real Advertising Campaign

The proposed event rate control algorithm has been de-
ployed to the AdLearnTM advertising optimization system
developed by AOL. Figure 9 shows the IVR control perfor-
mance for a real advertising campaign. The control objective
is to maximize the viewable impression volume, while de-
livering a given budget smoothly and in full, and keeping
a campaign-level IVR at or above a specified reference
level pref . The pacing and value maximization objective
was fulfilled by a separate control algorithm. The IVR
control was activated on 10/08/2016 with a reference signal
pref = 0.5 initially, which was then increased first to 0.6,
then to 0.7, and finally to 0.8 (green line in the bottom
left plot). From the control signal u (bottom right plot), the
actuator was essentially saturated to the lower limit 0 until
about 10/15/2016. This is because the targeted impression
inventories of the campaign all have higher IVR than the

specified reference of 0.5 and 0.6 during this time period.
For the rest of the campaign flight, it is clear that p̂ (red
curve in the bottom left plot) tracks pref closely.

Fig. 9. Experiment results: campaign-level control system performance.

VII. CONCLUDING REMARKS

We have proposed an approach to actuation and feed-
back control of the average event rate of online advertising
campaigns. In order to obtain a scalable solution the pro-
posed system consists of a static actuator module consu-
ming segment-level information, and a feedback controller
consuming only campaign-level information. The challenge
with this framework is that it may result in a plant with a
discontinuous input-output relationship. The devised solution
is a combination of an actuator that effectively turns the
plant continuous and a PI controller that achieves reference
tracking. The resulting control system has been evaluated on
real advertising campaigns with excellent performance.
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